Exemples de tests

Tests de validité d'hypothèse relatif à un paramètre

Caractère qualitatif : test de validité d'hypothèse relatif à une fréquence

Dans une population, on étudie la fréquence p d'un caractère qualitatif. Les hypothèses concernent p. La fréquence du caractère dans un échantillon de taille n peut être considérée comme la réalisation d'une variable aléatoire F.

- On prend H_0 : " $p = p_0$ " comme hypothèse nulle où p_0 est une valeur donnée.
- L'hypothèse alternative H₁ s'exprime sous l'une des formes suivantes : "p≠p₀", "p<p₀" ou "p>p₀" (parfois "p=p₁" où p₁ est donnée). La première forme conduit à un test bilatéral, les autres à des tests unilatéraux.
- La variable de décision peut prendre une des formes suivantes :
 - * T = nF dont la loi est la loi binomiale $\mathcal{Z}(n; p_0)$ sous l'hypothèse H_0 .
 - * $T = \frac{F p_0}{\sqrt{\frac{p_0 (1 p_0)}{n}}}$ dont on approche la loi, sous l'hypothèse H_0 , par la loi normale $\mathcal{U}(0; 1)$ lorsque

$$n \ge 30$$
, $n p_0 \ge 15$ et $n p_0 (1 - p_0) > 5$

• Sous l'hypothèse H₀, le fait que *T* prenne des valeurs "très éloignées" de 0 est rare.

Exemple 1

Le fabricant d'un médicament breveté affirme qu'il est efficace à 90 % pour guérir une allergie en 8 heures.

- 1°) Élaborer un test permettant de décider au niveau de confiance de 95 % si l'affirmation du fabricant est légitime.
- 2°) Dans un échantillon de 200 personnes atteintes par cette allergie, on en a guéri 160 avec le médicament. Quelle conclusion peut-on en tirer ?

Caractère quantitatif : test de validité d'hypothèse relatif à une moyenne

Le paramètre étudié est la moyenne μ d'un caractère quantitatif dans une population.

Les hypothèses concernent μ et on note σ l'écart-type de la population.

La moyenne du caractère dans un échantillon de taille n peut être considérée comme la réalisation d'une variable aléatoire \overline{X} .

- On prend H_0 : " $\mu = \mu_0$ " comme hypothèse nulle où μ_0 est une valeur donnée.
- L'hypothèse alternative H_1 s'exprime sous l'une des formes suivantes : " $\mu \neq \mu_0$ ", " $\mu < \mu_0$ " ou " $\mu > \mu_0$ " (parfois " $\mu = \mu_1$ " où μ_1 est donnée).
- La variable de décision T prend différentes formes :

* Si
$$\sigma$$
 est connu : $T = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$ et

- sous l'hypothèse H_0 , la loi de T est loi normale $\mathcal{U}(0;1)$ si le caractère est distribué normalement dans la population ;
- sous l'hypothèse H_0 , la loi de T est approchée par la loi normale $\mathcal{U}(0; 1)$ si $n \ge 30$.

* Si σ est inconnu : $T = \frac{\overline{X} - \mu_0}{\widehat{S} / \sqrt{n}}$ où \widehat{S} est la variable aléatoire qui, à chaque échantillon de taille n,

associe son écart-type corrigé et

- sous l'hypothèse H_0 , la loi de T est loi de Student à n-1 degrés de liberté si le caractère est distribué normalement dans la population ;
- sous l'hypothèse H_0 , la loi de T est approchée par la loi normale $\mathcal{U}(0; 1)$ si $n \ge 30$.
- Sous l'hypothèse H₀, le fait que *T* prenne des valeurs "très éloignées" de 0 est rare.

Exemple 2

Un agriculteur plantait jusqu'à présent une variété A de blé pour laquelle il obtenait un rendement moyen de 59 quintaux à l'hectare. Un fournisseur lui propose une nouvelle variété B qu'il teste sur 6 parcelles.

- 1°) En admettant que le rendement se distribue normalement, élaborer un test permettant de savoir au vu des rendements des 6 parcelles si le rendement de la nouvelle variété B est meilleur que celui de la variété A au seuil de confiance de 1 %.
- 2°) L'agriculteur obtient sur les 6 parcelles un rendement moyen de 61 quintaux à l'hectare avec un écarttype de 3,8 quintaux à l'hectare. Doit-il adopter la variété B ?

Exemple 3

Une machine fabrique des pièces mécaniques en séries. Elle a été réglée pour que le diamètre de celles-ci soit égal à 21 mm. Naturellement, une certaine variabilité est inévitable.

- 1° a) Élaborer un test permettant de décider, au seuil de confiance de 5 %, au vu d'un échantillon de 100 pièces si le réglage de la machine peut encore être considéré comme correct.
 - b°) Sur un échantillon de 100 pièces, on a observé pour ce diamètre une valeur moyenne de 21,2 mm avec un écart-type de 0,6 mm.
- 2°) Un autre échantillon donnant un diamètre moyen de 21,1 mm avec un écart-type de 0,54 mm a permis d'accepter le réglage de la machine au seuil de 5 %. Que peut-on en déduire pour la taille de l'échantillon ?

Tests de comparaison de populations

Caractère qualitatif : comparaison de deux proportions

Dans deux populations \mathcal{P}_1 et \mathcal{P}_2 , on étudie un caractère qualitatif ayant pour fréquences respectives p_1 et p_2 . On veut savoir, au vu de deux échantillons des deux populations, s'il existe une différence significative entre p_1 et p_2 . La fréquence f_i du caractère dans un échantillon de taille n_i de la population \mathcal{P}_i peut être considérée comme la réalisation d'une variable aléatoire F_i pour $i \in \{1; 2\}$. F_1 et F_2 sont indépendantes.

- On prend comme hypothèse nulle H_0 : " $p_1 = p_2$ ".
- L'hypothèse alternative H_1 s'exprime sous l'une des formes suivantes : " $p_1 \neq p_2$ " ou " $p_1 < p_2$ " ou " $p_1 > p_2$ ".
- La variable de décision est $T = \frac{F_1 F_2}{\sqrt{F(1-F)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$ avec $F = \frac{n_1 F_1 + n_2 F_2}{n_1 + n_2}$ Sous l'hypothèse H_0 , on

approche la loi de T par la loi normale $\mathcal{U}(0;1)$ lorsque n_1 et n_2 sont supérieurs à 30, que $n_1 p_1$ et $n_2 p_1$ sont supérieurs 15 et que $n_1 p_1 (1-p_1)$ et $n_2 p_1 (1-p_1)$ sont supérieurs à 5; pour les calculs, on estime p_1 par

 $\frac{n_1f_1 + n_2f_2}{n_1 + n_2}$ où f_1 et f_2 sont les fréquences observées des caractères dans les échantillons de tailles respectives n_1 et n_2 dans respectivement les populations \mathcal{P}_1 et \mathcal{P}_2 .

• Sous l'hypothèse H₀, le fait que T prenne des valeurs "très éloignées" de 0 est rare.

Exemple 4

On veut savoir si les résultats d'une thérapeutique sont les mêmes suivant que le malade a ou non de la fièvre.

- 1°) Élaborer un test permettant d'en décider, au seuil de confiance de 5 %, au vu d'échantillons de 200 malades fiévreux et de 100 malades non fiévreux.
- **2°) -** Parmi 200 malades fiévreux, 72 % sont guéris par le traitement. Parmi 100 malades non fiévreux, 88 % sont guéris. Que peut-on en conclure ?

Caractère quantitatif

Comparaison de deux variances

Dans deux populations \mathcal{P}_1 et \mathcal{P}_2 , on étudie un caractère quantitatif ayant pour variances respectives σ_1^2 et σ_2^2 . On veut savoir, au vu d'un échantillon de chacune des populations, s'il y a une différence significative entre σ_1^2 et σ_2^2 . L'écart-type corrigé du caractère dans un échantillon de taille n_i de la population \mathcal{P}_i peut être considérée comme la réalisation d'une variable aléatoire \widehat{S}_i pour $i \in \{1; 2\}$. \widehat{S}_1 et \widehat{S}_2 sont indépendantes.

- On prend comme hypothèse nulle H_0 : " $\sigma_1 = \sigma_2$ ".
- L'hypothèse alternative H_1 s'exprime sous la forme : " $\sigma_1 \neq \sigma_2$ " ou $\sigma_1 < \sigma_2$ " ou " $\sigma_1 > \sigma_2$ ".
- La variable de décision est T peut prendre plusieurs formes :
 - * T est l'une des deux variables aléatoires $\frac{\widehat{S_1}^2}{\widehat{S_2}^2}$ ou $\frac{\widehat{S_2}^2}{\widehat{S_1}^2}$. Sous l'hypothèse H_0 , ces variables aléatoires suivent les lois F de Snédécor à respectivement $(n_1 1; n_2 1)$ et $(n_2 1; n_1 1)$ degrés de liberté si le caractère est distribué normalement dans les deux populations;
 - * $T = \frac{\widehat{S_1^2} \widehat{S_2^2}}{\sqrt{2} \sqrt{\frac{\widehat{S_1^4} + \widehat{S_2^4}}{n_1}}}$ dont la loi est approchée, sous l'hypothèse H₀, par la loi normale $\mathcal{U}(0; 1)$ lorsque

 n_1 et n_2 sont supérieurs ou égaux à 30.

• Sous l'hypothèse H₀, le fait que T prenne des valeurs "très éloignées" de 1 ou de 0 selon le cas est rare.

Exemple 5

A la suite de la publication des résultats du baccalauréat dans deux académies A et B, on prélève

- 1°) On admet la normalité de la distribution des résultats. Élaborer un test permettant de décider au vu des variances d'un échantillon de 25 résultats dans l'académie A et d'un échantillon de 28 élèves dans l'académie B si les résultats sont plus dispersés dans l'académie A que dans l'académie B au seuil de confiance de 5 %.
- 2°) Les variances respectives des totaux de points des élèves des échantillons sont $\hat{s_A}^2 = 13,6$ et $\hat{s_B}^2 = 9,5$. Peut-on admettre que les résultats sont plus dispersés dans l'académie A que dans l'académie B?

Comparaison de deux moyennes

Dans deux populations \mathcal{P}_1 et \mathcal{P}_2 , on étudie un caractère quantitatif ayant pour moyennes respectives μ_1 et μ_2 et pour écarts-types respectifs σ_1 et σ_2 . On veut savoir, au vu d'un échantillon de chacune des populations, s'il y a une différence significative entre μ_1 et q_2 .

La moyenne du caractère dans un échantillon de taille n_i de la population \mathcal{P}_i peut être considérée comme la réalisation d'une variable aléatoire \overline{X}_i pour $i \in \{1; 2\}$. \overline{X}_1 et \overline{X}_2 sont <u>indépendantes</u>.

Pour $i \in \{1; 2\}$, \hat{S}_i est la variable aléatoire qui, à chaque échantillon de \mathcal{P}_i , associe son écart-type corrigé.

- On prend comme hypothèse nulle H_0 : " $\mu_1 = \mu_2$ ".
- L'hypothèse alternative H_1 s'exprime sous l'une des formes suivantes " $\mu_1 \neq \mu_2$ ", " $\mu_1 < \mu_2$ " ou " $\mu_1 > \mu_2$ ".
- La variable de décision T prend différentes formes :

* Si
$$\sigma_1$$
 et σ_2 sont connus: $T = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ et

- sous l'hypothèse H_0 , la loi de T est loi normale $\mathcal{U}(0;1)$ si le caractère est distribué normalement dans les deux populations ;
- sous l'hypothèse H_0 , la loi de T est approchée par la loi normale $\mathcal{U}(0;1)$ si n_1 et n_2 sont supérieurs ou égaux à 30.

* Si
$$\sigma_1$$
 et σ_2 sont inconnus mais égaux: $T = \frac{\overline{X_1} - \overline{X_2}}{\hat{S} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ où $\hat{S} = \sqrt{\frac{(n_1 - 1)\overset{\wedge}{S_1}^2 + (n_2 - 1)\overset{\wedge}{S_2}^2}{n_1 + n_2 - 2}}$ et

- sous l'hypothèse H_0 , la loi de T est loi de Student à $n_1 + n_2 2$ degrés de liberté si le caractère est distribué normalement dans les deux populations ;
- sous l'hypothèse H_0 , la loi de T est approchée par la loi normale $\mathcal{U}(0;1)$ si le caractère est distribué normalement dans les deux populations et si $n_1 + n_2 2 \ge 30$;
- sous l'hypothèse H_0 , la loi de T est approchée par la loi normale $\mathcal{U}(0;1)$ si n_1 et n_2 sont supérieurs ou égaux à 30.

* Si
$$\sigma_1$$
 et σ_2 sont inconnus mais différents: $T = \frac{\overline{X_1} - \overline{X_1}}{\sqrt{\sum_{n_1}^{\hat{N}_2} + \frac{\hat{N}_2}{n_2}}}$ dont la loi est approchée, sous

l'hypothèse H_0 , par la loi normale $\mathcal{U}(0;1)$ si n_1 et n_2 sont supérieurs ou égaux à 30.

• Sous l'hypothèse H₀, le fait que *T* prenne des valeurs "très éloignées" de 0 est rare.

Exemple 6

Une étude portant sur 1 000 cadres supérieurs (600 hommes et 400 femmes) révèle que la moyenne des salaires masculins est de 3 800 € tandis que la moyenne des salaires féminins est de 3 500 € avec des écarts-types respectifs de 610 € et 760 €

Au seuil de confiance de 5 %, la différence des salaires moyens des deux groupes est-elle imputable au seul hasard d'échantillonnage ?